SPLK-ANDATSC - Splunk 8.0 for Analytics and Data Science
SPLK-ANDATSC - Splunk 8.0 for Analytics and Data Science
Overview
Duration: 3.0 days
This 13.5 hour certification & training course is for users who want to attain operational intelligence level 4, (business insights) and covers implementing analytics and data science projects using Splunk's statistics, machine learning, built-in and custom visualization capabilities.
Objectives
Please refer to course overview
Content
Module 1 - Analytics Workflow
- Define terms related to analytics and data science
- Define the analytics workflow
- Describe common usage scenarios
- Navigate Splunk Machine Learning Toolkit
Module 2 - Exploratory Data Analysis
- Describe the purpose of data exploration
- Identify SPL commands for data exploration
- Split data for testing and training using the sample command
Module 3 - Predict Numeric Fields with Regression
- Differentiate predictions from estimates
- Identify prediction algorithms and assumptions
- Describe the fit and apply commands
- Model numeric predictions in the MLTK and Splunk Enterprise
- Use the score command to evaluate models
Module 4 - Clean and Preprocess the Data
- Define preprocessing and describe its purpose
- Describe algorithms that preprocess data for use in models
- Use FieldSelector to choose relevant fields
- Use PCA and ICA to reduce dimensionality
- Normalize data with Standard Scaler and Robust Scaler
- Preprocess text using Imputer, and NPR, TF-IDF, Hashing Vectorizer and the cluster command
Module 5 - Cluster Data
- Define Clustering
- Identify clustering methods, algorithms, and use cases
- Use Smart Clustering Assistant to cluster data
- Evaluate clusters using silhouette score
- Validate cluster coherence
- Describe clustering best practices
Module 6 - Anomaly Detection
- Define anomaly detection and outliers
- Identify anomaly detection use cases
- Use Splunk Machine Learning Toolkit Smart Outlier Assistant
- Detect anomalies using the Density Function algorithm
- Optimize anomaly detection with the Local Outlier Factor
- View results with the Distribution Plot visualization
Module 7 - Estimation and Prediction
- Differentiate predictions from forecasts
- Use the Smart Forecasting Assistant
- Use the StateSpaceForecast algorithm
- Forecast multivariate data
- Account for periodicity in each time series
Module 8 - Classification
- Define key classification terms
- Use classification algorithms
- Auto Prediction
- Logistic Regression
- SVM (Support Vector Machines)
- Random Forest Classifier
- Evaluate classifier tradeoffs
- Evaluate results of multiple algorithms
Audience
_
Prerequisites
- Splunk Fundamentals 1
- Splunk Fundamentals 2
- Splunk Fundamentals 3
- or equivalent Splunk experience
Certification
Lịch khai giảng
Form đăng ký
Các khóa đào tạo Splunk khác
Cơ hội nhận ưu đãi học phí lên tới 60%
Đăng ký tư vấn
cùng đội ngũ chuyên gia Trainocate!!
Xác nhận gửi thành công
Cảm ơn bạn đã để lại thông tin.
Đội ngũ chuyên gia của Trainocate đang trong quá trình xác nhận thông tin và sẽ kết nối với bạn trong vòng 24 giờ.
Bản quyền thuộc về Trainocate Việt Nam